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Stewartson layers in transient rotating fluid flows 
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The formation and transient dynamics of Stewartson layers are examined herein. 
The results are applied to a transient rotating fluid flow for which (i) Stewartson 
layers are presumed to be important, and (ii) the Ekman layers are found to be 
non-divergent, and hence unable to induce the crucial secondary circulation 
occurring in the spin-up process. The steady state is nevertheless reached after 
a spin-up time. 

1. Introduction 
The transient motions occurring in a fluid as it adjusts from one state of rigid 

body rotation to another were examined by Greenspan & Howard (1963) (here- 
after this paper is referred to as G & H). The importance of this spin-up process 
stems from the fact that it is typical of various transient processes in rotating 
fluid dynamics, particularly in so far as the duration of the transient and the role 
of the Ekman layers are concerned. More specifically, G & H found that the spin- 
up time is of the order of (L2/vQ)fi, where Cl is the angular velocity, $1 the kine- 
matic viscosity of the fluid and L a characteristic height of the container. The 
Ekman layers are able, by means of their suction, to induce secondary circula- 
tions which affect profoundly the vorticity and angular momentum fields. By 
this mechanism, the Ekman layers strongly control the transient process. 

In  the spin-up process, Stewartson layers are either passive or altogether 
absent. As a result, their transient behaviour was very briefly mentioned by 
G & H, and their formation was not discussed. However, there could be transient 
rotating fluid flows in which these layers might play an important role. The 
following problem which we propose to investigate falls into this category. 

A circular, cylindrical annulus filled with fluid rotates as a rigid body around a 
vertical axis. At a given time, a flow is induced by injecting and withdrawing fluid 
through the inner and outer vertical boundaries respectively. 

Apart from the fact that the above problem calls for transient Stewartson 
layers and that it is of some geophysical relevance (Barcilon 1967a), it is also of 
interest on account of the Ekman layers which arise. Indeed, as we shall presently 
see, these layers are non-divergent throughout the transient process and there- 
fore the crucial suction mechanism involved in the spin-up is absent. As a result, 
it is not altogether clear whether the spin-up time characterizes the duration of 
the transient. 

Before answering these questions, we shall have to consider the transient 



816 V .  Barcilon 

Stewartson layers p e r  se. In  particular, we shall have to examine their formation 
time and their transient dynamics. 

This, together with an approximate solution of the above-mentioned problem, 
will constitute the purpose of the present paper. As far as possible, we shall carry 
out the investigation of the transient Stewartson layers independently of the 
transient source-sink flow, so that this section of the paper could be read 
separately. 

2. Basic equations 
In the present paper we shall restrict our attention to flows which are small 

deviations from a state of rigid rotation about the vertical. In other words, the 

Rossby number 6 = U/QL,  

where U is a characteristic velocity, is assumed to be small. The length L is the 
height of the container: consequently, if z is the dimensionless vertical co- 
ordinate, the horizontal boundaries are at z = 0 and z = 1. 

The fluid is assumed to be homogeneous, incompressible and viscous. The 
linearized dimensionless equations of motion written in the frame in which the 
fluid is originally at  rest are 

where p is the dimensionless pressure, q the dimensionless velocity and & is a 
unit vector in the vertical direction. The parameter E ,  the Ekman number, is 

defined thus: E = v/QL2, 

and represents a measure of the viscous force relative to the Coriolis force. 
Throughout this paper E is assumed to be very small. The time is scaled with 
respect to the rotation frequency a; consequently the dimensionless spin-up 
time is E-4. 

3. Transient Stewartson layers 
Steady Stewartson layers are vertical boundary layers which arise as an in- 

direct consequence of the strong constraint placed on the dynamics of rotating 
fluids by the Taylor-Proudman theorem (Taylor 1923). They occur either along 
vertical boundaries, or as detached (free) shear layers straddling the vertical 
vortex sheets deduced from the inviscid dynamics (Stewartson 1957). In general, 
they have a double structure which consists of an inner layer of thickness ES and 
of an outer layer of thickness Ei. Their detailed structure is however strongly 
dependent upon the problem under consideration and the role they must fulfil : 
adjustment of tangential velocity (Stewartson 1957; Jacobs 1964), smearing-out 
of z-dependence (Barcilon 1967b), etc. As a result, our understanding of these 
layers has evolved, piecemeal, from a collection of different problems in which 
they occurred. The superficial diversity of the Stewartson layers stems from the 
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fact that the E )  and Ea layers behave as separate entities which can arise in 
various combinations. 

Bearing in mind the above remarks, we shall try to obtain a general picture 
of the transient Stewartson layers by considering two specific and rather distinct 
problems in which they arise, and by treating BS much as possible the E* and 
E* layer separately. Furthermore, we shall emphasize the basic features of the 
transient process rather than the structural details of these layers. 

In this section, we examine the case in which Stewartson layers are generated 
by the shearing motion of the vertical wall of a circular cylinder. This problem 
is chosen because of its relative simplicity and because of its suitability to vorti- 
city arguments. More specifically, we consider the transient Stewartson layers 
generated along the side wall of a circular cylinder by applying an impulsive 
zonal velocity to this side wall. Since the thicknesses of the boundary layers are 
assumed to be much smaller than the radius of the cylinder, we can neglect the 
effects of curvature and formulate the problem as follows. 

Consider the fluid region x B 0, -00 < y < 00, 0 < z < 1 bounded by three 
rigid walls. At time t = 0 the vertical boundary x = 0 is moved in its own plane 
with a velocity &(x) j independent of y, wherej is a unit vector in the y-direction. 
It is convenient (Barcilon 19676) to decompose &(z)  into two parts, viz. 

where 

v,(z) = ( V )  + V ( z ) ,  
fI 

( V )  = J -V,(x)dz  
0 

is the average 'zonal' velocity of the wall. We shall consider the Stewartson 
layers induced by 9 " ( z )  and ( V )  separately and in that order. 

3.1. E* layer 

The vortex sheet of variable strength caused by the shearing motion of the 
boundary diffuses into the fluid and gives rise to a Rayleigh layer. In the initial 
phase of the transient process, the y-component of the velocity in this Rayleigh 
layer is a function of the similarity variable x21Et; its z-dependence is carried 
parametrically and is essentially that of the boundary velocity, except in the 
immediate neighbourhood of the horizontal walls along which Ekman layers are 
produced. After a time of O ( l ) ,  i.e. after a few revolutions, the thickness of the 
Rayleigh layer is of O(E*) and the Ekman layers are completely formed (see 
G & H). This can be regarded as the first part of the transient process. 

The Stewartson layer starts to form after this first phase is over. During the 
second half of the transient, we can (i) consider the Ekman layers as quasi- 
steady and (ii) use the Ekman compatibility conditions, viz. 

since, from then on, the Rayleigh layer is thicker than EB. Sacrificing the exact 
description of the first half of the transient, we shall assume that the Ekman 
layers are quasi-steady and that the compatibility conditions can be used 
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throughout the entire transient. This procedure, which was successfully used by 
G & H, has the advantage of reducing considerably the mathematical difficulties 
inherent in time-dependent rotating fluid flow problems. 

Using the scaling appropriate for the steady state, viz. 

u = E&([, Z ,  T ) , )  

where 

i t  is easy to see after substitution in the equations of motion that the long time 
variable must be 

Consequently, the transient E )  layer equations are 

(7) T = E h .  

-26 = -%, 

The balance in the direction normal to the boundary layer is quasi-geostrophic. 
The boundary conditions associated with the above equations are 

(9@,) I ,G = 0 at z = 0,1,  
_ - r  u = v - 3  (2) = u" ,=O at k =  0,  

G,E,zZ+O as 5'00. 

The initial conditions for (8) should reflect the state of the fluid at  t - 1 rather 
than at  t = 0. However, after the first phase of the transient is over, the motion is 
confined to distances smaller than EB; in other words, for all 5's of O( 1)  the fluid is 
at rest, and hence ~ -. 

(90)  v = I P  = 0 for T = 0. 

Integral representations of the solution of the above initial boundary-value 
problem can be obtained by means of Laplace transform and appropriate Fourier 
series in z. However, because these representations are lengthy and not very 
revealing, they will not be given here. Rather, let us discuss in physical terms 
the transient dynamics from the point of view of vorticity. 

Eliminating .ii and fj from (8), we essentially obtain the components of the 
vorticity equation in the y- and z-directions, vix. 

On account of its vertical structure, the $7-field created by the shearing motion 
of the boundary will tilt the vortex lines in the y-direction, thus creating vor- 
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ticity in that direction. This y-component of vorticity will give rise to a circula- 
tion in the (x, 2)-plane, i.e. will generate a C- and a G-field. In  turn, the vertical 
structure of the G-field thus created will be responsible for a stretching of the 
vortex lines and hence a production of vertical vorticity. The cycle is then closed 
by noting that the vertical vorticity is related to the &field (see figure 1). After 

I I I I 
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FIGURE 1. Schematic diagram of the transient I& layer dynamics. ‘Zonal component’ 
and ‘Meridional circulation’ refer to the horizontal component and to the circulation in 
vertical planes respectively parallel and perpendicular to the boundary-layer surface. 

a time of O(E-*), i.e. after a time shorter than the spin-up time, the exchange 
between the tangential and vertical components of vorticity is damped by 
viscosity and the steady state is reached. The E* layer, which is often required to 
‘ shield ’ the interior region from boundary conditions whose z-dependence is 
incompatible with the Taylor-Proudman theorem, relies precisely on these 
variations for its existence. 

A few remarks are worth making at  this point. The flow induced by moving 
the boundary with a velocity y‘(z) whose vertical average is zero, is entirely con- 
fined to an E3 layer. This lack of interaction between the E* layer and the interior 
is rather typical. Consequently, if the transient interior dynamics is to be 
influenced by Stewartson layers, this can only occur through the E t  layer. 
Finally, the vorticity equations (10) are not altered when the fields have a y- 
dependence, i.e. when the boundary velocity &(y, 2) is a function of y and z ;  as 
a result, the above picture of the transient is still valid. 

3.2. EB layer 

Let us now consider the layer generated by the average velocity ( V ) ,  which we 
expect to be made up mainly of an E i  layer on account of the lack of z-de- 
pendence of the boundary condition 

The first part of the transient process is identical with that of the 234 layer: after 
a few revolutions, the Rayleigh layer diffuses over a distance of O(E4) and 

52-2 
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Ekman layers are formed along the horizontal boundaries. Instead of being 
produced as a result of both the vortex-line tilting and the vertical pressure 
gradient, the vertical velocity is now induced by the Ekman-layer suction. This 
creates the usual vortex-line stretching and hence vertical vorticity which is 
diffused by viscous action. Sacrificing once more the exact description of the 
first phase of the transient, we shall again assume that the Ekman layers are 
quasi-steady and that the compatibility conditions are valid throughout the 
entire transient. Using the scaling of the various fields appropriate for the steady 
state, viz. 

where 

is the stretched variable, we see after substitution in the equat'ions of motion that' 
the long time variable must be 

Hence, the time necessary for the ES layer to form is the spin-up time. The 
equations for the transient Ea layer are: 

= E%. (13) 

By means of arguments similar to those used for the E )  layer, we can deduce t,hat 
the initial condition appropriate for (14) is 

V = 0 at r = 0. ( 1 S a )  

The boundary conditions along the horizontal walls are simply the Ekman 
compatibility conditions 

The usual exponential decay of the boundary-layer fields provides one of the 
two conditions in the 7-direction, viz. 

a = -&z7 at 2 = 1 2 + - -1. 2 '  (15b) 

6-+0 as v--too; 1153) 

the other condition is c =  ( V )  a t  7 = 0, (15 4 
since, as shown in the appendix, there is no O(1) 'zonal' velocity in the interior. 

From (14) we can see that 'p, and hence U and V ,  are independent of x through- 
out the transient. The Ekman compatibility conditions (15b)  and the continuity 
equation can be identically satisfied by writing U ,  V and W in terms of a single 
function $ of r and 7 thus: - 

(16) 
i ?T = I$, 

- 
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The equation for $, obtained by substituting the above expressions in the 
y-component of the momentum equation, is 

- 
h + 2 ?  = &?l* (17 )  

Expressions for the Et  layer velocity fields can now be easily found, viz. 

The expressions (18) do not represent the complete velocity fields, if only 
because and W do not satisfy the no-slip condition. This feature is typical of 
the E i  layer, which cannot occur all by itself and which must be coupled to an 
Ef layer or to the interior, or both. In  particular, whenever the side-wall driving 
produces an interior flow, the E t  layer will interact with the interior. It is there- 
fore already apparent that the spin-up time is the characteristic time scale even 
for interior flows controlled by Stewartson layers. 

For the specific problem considered here, only an ES layer is required to adjust 
the E* layer fields as given by (18) (see the appendix). Its primary role is to 
‘close ’ the vertical mass transport. The flow in the E% and E )  layer combination 
consists of pairs of re-circulating cells which are symmetric with respect to the 
plane z = Q. After the steady state isreached, these layers are essentially identical 
with those originally discussed by Stewartson (1957) in connexion with the flow 
induced by two disks rotating in unison (the so-called ‘symmetrical problem ’).t 
In the interior, the fluid is not spun up; in fact, it remains a t  rest throughout the 
entire transient process. 

In  conclusion, it is interesting to note that the formation times of the Ekman, 
E* and E )  Stewartson layers are simply equal to the time required for the diffusion 
to be felt over distances equal to the thicknesses of these respective layers. 

The results of the present paragraph suggest that valid approximate solutions 
of a transient rotating fluid flow problem can be obtained (i) by treating both the 
Ekman and ES layers as quasi-steady and (ii) by solving only the equations for 
the interior and Ea layer fields, which are assumed to be functions of r but not t or 
T. By means of this procedure, inertial waves are of course filtered out. 

4. Transient flow due to a source-sink distribution 
Let us consider a circular cylindrical annulus of unit height and of inner and 

outer radius a and b. This annulus is filled with fluid and is rotating rigidly about 
its vertical axis. At time t = 0, fluid is injected and withdrawn uniformly along 

The only difference lies in the fact that the layers considered by Stewartson were 
detached. 
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the inner and outer vertical walls, i.0. the boundary conditions along these walls 
are g =  PEB at r = a ,  1 

a ,  
b 

q = - r B  a t  r = b ,  

where P is a unit vector in the radial direction; the factor E: is introduced purely 
for convenience. 

We first consider the interior fields, which will be denoted by capitals. Guided 
by the steady-state solutions (Lewellen 1965), we look for transient solutions of 
the form u = E m y , ,  x , 7 )  + ... ,\ 

F = V(O)(T,  2 , 7 )  + . ". , I 

\ w = EBW'O'(r, 2, 7 )  + . . . , 
P(O)(r, 2 ,  7 )  + . . . . P = 

The zeroth-order interior dynamics is governed by the following equations : 

- 2 V(0) = - PCO) 

Vi,") + 2 U(0) = 0, 

( l / r )  (rU(O)),+ W(,O) = 0. 

(20) 

We therefore see that Po), and hence U(O) and P), are independent of z and that 
W(0) is at  most a linear function of x .  The horizontal boundary conditions for (21) 
are the quasi-steady Ekman compatibility conditions 

W ( O ) =  ~ & ( 1 / r ) ( r v @ ) ) ~  at =.= j - + l .  2 - 2  

Introducing a stream-like function $(r ,  r )  such that 

( 2 2 )  

I (23) 
U(0) = $, 

W ( 0 )  = - ( z  - ;) (I/,) i 
I 

we can deduce from ( 2 2 )  that 
~ = J W +  F(7)  ~. . (24) r 

where F ( r )  is an arbitrary function of r. Substituting the above expressions for 
the velocity fields in the zonal momentum equation, we get an equation for V(O)~ 
viz . 

Recalling that the zonal velocity is initially equal to zero, we deduce that 

V(,0)+2V(O) = - ( 1 / Y ) F ( T ) .  ( 2 5 )  

v(0) == --e-27. ' 1,; F ( h )  eZAdA, ( 2 6 )  
7 

and hence ( 2 7 )  

In  order to determine the function F(7)  \?re must consider t'he transient Bi 
layers on the inner and outer walls. The equations for these E i  layers are identical 
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with (14) provided q is interpreted as E-i(r - a) and E-*(b - r )  for the inner and 
outer walls respectively. Consequently, we can avail ourselves of the expressions 
(16) and write the E* layer correction fields as 

( 2 8 )  

For the inner wall, we are therefore led to solve the following equabion 

subject to the conditions 

- 
$4 + 2$ = i$?) (29) 

- 

(30) 

$ = O  at 7 = 0 ,  

$ - t o  as ~ + m .  

- # + u(0) - 1 = $ + [ i ( O )  = 0 at '1 = 0 
- 

The boundary conditions a t  7 = 0 must be compatible for a solution to exist. This 
compatibility condition, which is 

u(0)- 1 = v(0) at y = a ,  (31) 
determines F(7),  viz. F(7)  = u.  (32) 

The same result is obtained by examining the Ea layer on the outer wall r = 6 .  
Using now a Laplace transform, we can easily solve for 3, 

and for the interior fields 

In addition to the above interior and E': layer fields, one would also have to 
introduce weak E* layers to adjust the vertical velocity along the side walls. As 
previously mentioned these layers can be treated as quasi-steady ; the lengthy 
expressions for the velocity fields in these layers are not given here. 

A fairly detailed picture of the transient process can now be inferred from (34). 
At the beginning of the transient, the flow is mainly radial, and comparable to 
what it would be if the container was not rotating. However, the protracted 
action of the Coriolis force deflects this radial flow to the right, thus inducing a 
clockwise zonal motion. All the while, these interior motions are adjusted to zero 
along the horizontal walls by means of Ekman layers. As the strength of the zonal 
flow increases, so does that of the EB layers which are needed to satisfy the no-slip 
conditions along the vertical boundaries. As a consequence, the E i  layer along 
the inner wall feeds an increasingly large fraction of the injected fluid to the top 
and bottom Ekman layers; when the steady state is reached, the radial mass 
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transport is entirely effected by the Ekman layers and the interior flow is purely 
zonal. Throughout the entire transient, and even in the steady state, the top and 
bottom Ekman layers are non-divergent in the interior. 

5.  Conclusion 
The transient source-sink flow investigated here provides an example of a 

rotating fluid flow in which (i) transient Stewartson layers had to be taken into 
account and (ii) Ekman layers were found to be non-divergent. The fact that the 
steady state is reached after a spin-up time is therefore rather surprising. Indeed, 
in the spin-up process, the divergence of the Ekman layers is playing a crucial 
role and the spin-up time is intimately related to this suction mechanism. 

The fact that the E i  layer is formed over a spin-up time could, of course, be 
invoked to explain this result. However, this explanation is only partially cor- 
rect. Recalling that the very existence of the EB layers depends on the Ekman 
layer suction, we are forced to the following conclusion. Either by direct action 
over the interior (as in the spin-up process), or indirectly through the E* layers 
(as in the present case), the Ekman layers are always important during the 
transient process. 

This work was partially supported by the U.S. Air Force, Contract F 44620- 
67-C-0007. 

Appendix 
We outline here how the solution to the problem considered in $3.3 can be 

obtained. In  particular, we shall show that the fluid’s interior is not spun up and 
discuss the nature of the E* layer required to adjust the velocity fields in the 
E i  layer as given by ( 18). 

Denoting once again the interior fields by capitals, and reverting to cylindrical 
co-ordinates, we look for solutions of the form 

u = E3Uco)(T, Z, 7) + . . . , 

The equations for U O ) ,  V(O) and W(O) are identical with (31) and consequently the 
representation of these fields in terms of a function @ of r and 7 is identical with 
that given in (23) and (24), viz. 

(A 2 )  

However, since both U(0) and V(O) must be regular at r = 0, we must set the 
function F(7)  equal to zero. As a result, the initial value problem for @ is homo- 
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geneous and hence +, U(O), Vo) and W(O) are identically zero. The flow induced by 
spinning-up the side wall of a cylinder is therefore confined to the Stewartson 
layer. 

Turning now to the E i  layer, we obtain the magnitude of the first non-zero 
terms in the asymptotic series representation of the various fields, by requiring 
that the vertical mass flux in this layer be comparable to that in the E i  layer. 
As we shall presently see, this requirement is equivalent to the no-slip condition 
for the radial velocity. With t,he same notations as before, the complete velocity 
fields are 

(A 3) 

(A 4) 

I u = Equ+ . . . I+  E@+ . . . I ,  
[G+ . . .I+ EQ[6+ ...I, 

w = E)[E+ ...I+ @[GI+ ...I, 
2) = 

and the boundary conditions along the side mall (6 = 7 = 0) are 
E + . i i = B = i Z = O  at c = O .  

It is preferable to replace the boundary condition containing .ii by an equivalent, 
but more suitable, one. (In the steady state, the Fourier series representation of 
.ii is known to diverge right at the side wall). This is achieved by integrating and 
adding the continuity equations for the Ef and E i  layers across their respective 
widths, viz. 

Therefore we can replace the boundary condition on the radial velocity by 

where Q is as yet an arbitrary function of time only. However, by continuity 
arguments, it is clear that Q is proportional to the vertical mass flux in the in- 
terior; hence it is equal to zero. 

Quasi-steady approximations for the Eg fields can easily be obtained by solving 
he following boundary-value problem : 

26# = Gtt5, 2Gs = -6 566’ (A 6 )  

with s i j  = tZ = 0 for < = 0, 

t?, = 0 for z = 0,1, 

6,G+O as <+a, 
where .Lu is given by (18). 
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